
As shown in (a), since deep CNNs is good at detecting 
interested points, we first use neural networks to predict 3D 
hand joint locations from single-view images.
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Realistic 3D hand-object reconstruction from monocular images. 
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Leverage hand pose estimation as a guidance for SDF-based 
3D hand-object reconstruction.

Use monocular videos to alleviate occlusion and motion blur
issues and improve the performance. 

Deep SDFs can generalize to different shape resolutions but 
lack explicit modeling of the underlying 3D geometry.•

We formulate the joint hand-object 3D reconstruction task as a multi-task learning framework.

Pose Estimation

Visual Feature

We validate the method by conducting experiments on ObMan
and DexYCB benchmarks. We employ metrics including Chamfer 
Distance (CD) and F-score (FS) to evaluate the quality of results.

• 3D hand-object reconstruction from a single RGB image is 
intrinsically hard, especially under occlusion or motion blur. 

•

•
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•

As shown in (b), we use inverse kinematics to recover the 
pose transformations for each hand bone.•
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For hand kinematic features, compared with a recent work 
[4], we use full kinematic chains of pose transformations.•

• For object kinematic features, instead of only considering the 
object translation as in [4], we additionally consider relative 
positions between the query point x and each hand joint.

We use the spatial and temporary transformer to aggregate 
features from multiple frames.

•

Then, we project the query point x onto the plane of the 
feature map and obtain the refined local feature for the 
shape reconstruction.

•

Network Architecture

Our model consists of hand pose predictor, object pose 
predictor, SDF feature encoder and SDF decoders.

We use two backbones to handle the task of 3D shape 
reconstructions and the task of pose predictions separately.

•

•

We observe that our model can achieve the best 
performance when the object pose predictor and SDF 
feature encoder shares the same backbone.

•

Quantitative Comparison on DexYCB
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