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•Though the previous approach [1] embeds strong prior knowledge about
the human hand by using the parametric model [3], it can only produce
hand and object meshes of limited resolution.

•The recent approach [2] employs signed distance fields (SDFs) to re-
construct surfaces at high resolution but fails to leverage any prior
knowledge about hands or objects.

Our contributions:
•We propose to combine the advantages of parametric mesh models and

SDFs and present a joint learning framework for 3D reconstruction.
•To effectively embed prior knowledge into SDFs learning, we propose

to disentangle the pose learning from the shape learning for this task.2 Chen et al.
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Fig. 1: Previous work on hand-object reconstruction use either (a) parametric shape
models or (b) implicit 3D representations. Our proposed method (c) extends SDFs with
prior knowledge on hand and object poses obtained via parametric models and can pro-
duce detailed meshes for hands and manipulated objects from monocular RGB images.

real human hands and encodes strong prior shape knowledge, such methods typically
provide anthropomorphically valid hand meshes. However, the resolution of parametric
meshes is limited, making them hard to recover detailed interactions. Also, reconstruct-
ing 3D objects remains a big challenge. Hasson et al. [21] propose to use AtlasNet [16]
to reconstruct 3D objects. However, their method can only reconstruct simple objects,
and the reconstruction accuracy remains limited. To improve reconstruction, several
methods [20, 62, 71] make a restricting assumption that the ground-truth 3D object
model is available at test time and only predict the 6D pose of the object.

Recently, neural implicit representations have shown promising results for object
reconstruction [45]. Following this direction, Karunratanakul et al. [26] propose to rep-
resent hands and objects in a unified signed distance field (SDF) and show the potential
to model hand-object interactions, see Figure 1(b). We here adopt SDF and argue that
such implicit representations may benefit from explicit prior knowledge about the pose
of hands and objects.

For more accurate reconstruction of hands and manipulated objects, we attempt to
combine the advantages of the parametric models and SDFs. Along this direction, pre-
vious works [10, 14, 25, 56] attempt to leverage parametric models to learn SDFs from
3D poses or raw scans. In our work, we address a different and more challenging setup
of reconstructing hands and objects from monocular RGB images. We hence propose a
new pose-normalized SDF framework suited for our task.

Motivation

Our model can be generally split into two parts: the pose
estimation part and the shape reconstruction part. The shape
reconstruction part employs pose estimation results to normalize SDFs
prediction into their canonical frames.
Hand Pose Estimation: we employ a parametric hand mesh model,
MANO [3], to capture the kinematics for the human hand. In implemen-
tation, we integrate MANO as a differentiable layer into our model and
use it to predict the hand vertices (v⃗h), the hand joints (⃗jh) and hand
poses (θ⃗h). During training, we define the supervision on the joint lo-
cations (Lj⃗h

), the shape parameters (Lβ⃗h
) and the predicted hand poses

(Lθ⃗h
):

Lhand = λj⃗h
Lj⃗h

+ λβ⃗h
Lβ⃗h

+ λθ⃗h
Lθ⃗h

, (1)

where we set λj⃗h
, λβ⃗h

and λθ⃗h
to 5 × 10−1, 5 × 10−7 and 5 × 10−5,

respectively.

Hand Pose Estimation

We set the origin of our coordinate system as the wrist joint defined in
MANO. We employ the volumetric heatmap to predict per voxel likeli-
hood for the object centroid and extract its 3D location from the heatmap
differentiably. During training, we optimize network parameters by min-
imizing the L2 loss between the estimated 3D object translation t⃗o and
its corresponding ground truth. The resulting loss Lobj is:

Lobj = λt⃗o
Lt⃗o

, (2)

where we empirically set λt⃗o
to 5× 10−1.

Object Pose Estimation

Our approach makes an attempt to disentangle the shape
learning and the pose learning. AlignSDF 5
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Fig. 2: Our method can reconstruct detailed hand meshes and object meshes from
monocular RGB images. Two gray blocks of 3D points indicate the same set of 3D
query points. The red arrows denote different loss functions applied during training.
The dashed arrows denote Marching Cubes algorithm [35] used at test time.

and deep implicit functions. By embedding prior knowledge into SDFs learning, our
method can produce more robust and detailed reconstruction results.

3 Method

As illustrated in Figure 2, our method is designed to reconstruct the hand and object
meshes from a single RGB image. Our model can be generally split into two parts: the
hand part and the object part. The hand part estimates MANO parameters and uses them
to transform 3D points to the hand canonical coordinate frame. Then, the hand SDF
decoder predicts the signed distance for each input 3D point and uses the Marching
Cubes algorithm [35] to reconstruct the hand mesh at test time. Similarly, the object
part estimates the object translation relative to the hand wrist and uses it to transform
the same set of 3D points. The object SDF decoder takes the transformed 3D points
as input and reconstructs the object mesh. In the following, we describe the three main
components of our model: hand pose estimation in Section 3.1, object pose estimation
in Section 3.2, and hand and object shape reconstruction in Section 3.3.

By estimating the hand pose, we could obtain the global rotation
(θ⃗hr) and its rotation center (⃗th) defined by MANO. Using the estimated
θ⃗hr and t⃗h, we transform any sampled 3D point x⃗ to the canonical hand
pose (i.e., the global rotation equals to zero):

x⃗hc = exp(θ⃗hr)
−1(x⃗− t⃗h) + t⃗h, (3)

where exp(·) denotes the transformation from the axis-angle represen-
tation to the rotation matrix using the Rodrigues formula. Then, we
concatenate x⃗ and x⃗hc to predict its signed distance to the hand. Sim-
ilarly, by estimating the object pose, we obtain the object translation t⃗o
and transform x⃗ to the canonical object pose:

x⃗oc = x⃗− t⃗o. (4)

Then, we concatenate x⃗ and x⃗oc and feed them to the object SDF de-
coder and predict its signed distance to the object.

Hand-object Shape Reconstruction

Our approach achieves state-of-the-art hand-object shape reconstruction
performance on Obman and DexYCB benchmarks.
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Table 3: Hand-object ablation experiments using 87K ObMan training data.
Models Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv

(d) 0.140 0.124 4.09 - - 90.3% 0.50 1.51
(e) 0.131 0.114 4.14 1.12 - 94.7% 0.58 2.00
(f) 0.148 0.130 3.36 - 3.29 92.5% 0.57 2.26
(g) 0.136 0.121 3.38 1.27 3.29 95.5% 0.66 2.81

(g∗) 0.111 0.093 2.11 - - 94.5% 0.76 3.87

Methods Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv
Hasson et al. [1] 0.415 0.383 3.60 1.13 - 94.8% 1.20 6.25

Karunratanakul et al. [2]-1De 0.261 0.246 6.80 - - 5.63% 0.00 0.00
Karunratanakul et al. [2]-2De 0.237 - 5.70 - - 69.6% 0.23 0.20

Ours 0.136 0.121 3.38 1.27 3.29 95.5% 0.66 2.81

4.4 Hand-only experiments on ObMan

To validate the effectiveness of our method, we first conduct hand-only ablation ex-
periments on ObMan. To this end, as shown in Figure 3, we first build three types of
baseline models. The baseline model (a) directly employs the hand SDF decoder to
learn SDFh(x⃗) from backbone features, which often results in a blurred reconstructed
hand. The baseline model (b) trains the hand SDF decoder and the MANO network
jointly and achieves better results. However, the reconstructed hand still suffers from
ill-delimited outlines, which typically result in finger merging issues, illustrated in the
second and third columns of Figure 5. Compared with the baseline model (b), the base-
line model (c) further uses the estimated MANO parameters to transform sampled 3D
points into the canonical hand pose, which helps disentangle the hand shape learning
from the hand pose learning. As result, the hand SDF decoder can focus on learning the
geometry of the hand and reconstruct a clear hand. The model (c∗) uses ground-truth
hand poses, which is the upper-bound of our method. Tables 1 and 2 present quantita-
tive results for these four models. In Table 1, we present our results using all ObMan
training samples and observe that the baseline model (c) has the lowest Hse and Hve,
which indicates that it achieves the best hand reconstruction quality. The baseline model
(c) can also perform hand pose estimation well and reduce the joint error to 1.2 cm. It
shows that the model (c) can transform x⃗ to the hand canonical pose well with reliable
θ⃗hr and t⃗h and benefit the learning of the hand SDFs. In Figure 5, we also visualize
results obtained from different models and observe that our method can produce more
precise hands even under occlusions. To check whether our method can still function
well when the training data is limited, we randomly choose 30K samples to train these
three models and summarize our results in Table 2. We observe that the advantage of
the model (c) is more obvious using less training data. When compared with the model
(a), our method can achieve more than 8% improvement in Hse and Hve, which further
validates the effectiveness of our approach.

Comparison with previous state-of-the-art methods on ObMan.
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Fig. 6: Qualitative comparison between different types of methods in hand-object ex-
periments on ObMan. Compared with recent methods [21, 26], our approach produces
more precise reconstructions both for the hands and objects.

Method Hse ↓ Hve ↓ Ose ↓ Hje ↓ Ote ↓ Cr Pd Iv
Hasson et al. [1] 0.785 0.594 4.4 2.0 - 95.8% 1.32 7.67

Karunratanakul et al. [2] 0.741 0.532 5.8 - - 96.7% 0.83 1.34
Ours 0.523 0.375 3.5 1.9 2.7 96.1% 0.71 3.45

the penetration depth (Pd) and intersection volume (Iv) of our model is much lower,
which suggests that our method can produce more detailed hand-object interactions. In
Figure 6, we also visualize reconstruction results from different methods. Compared
to previous methods, our model can produce more realistic joint reconstruction results
even for objects with thin structures. We include more qualitative analysis on ObMan
in Section C in the appendix.

4.6 Hand-object experiments on DexYCB

To validate our method on real data, we next present experiments on the DexYCB
benchmark and compare our results to the state of the art. We summarize our exper-
imental results in Table 5. Compared with previous methods, we achieve a 29.4% im-

Comparison with previous state-of-the-art methods on DexYCB.
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